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Abstract

The theory of Massera and Schaffer relating the existence
of unique almost periodic solutions of an inhomogeneous linear
equation to an exponential dichotomy for the homogeneous
equation has been completely extended to discretizations by
a strongly stable difference scheme. In addition it has been
shown that the almost periodic sequence solution will converge
to the differential equation solution at a rate 0(kP) where P
is the accuracy of the scheme, uniformly in t, if the coeffi-
cients are sufficiently smooth.

The preceding theory has also been applied to a class
of exponentially stable partial differential equations to
which one can apply the Hille-Yoshida Theorem. It is possible
to prove the existence of unique almost periodic solutions of
the inhomogeneous equation which can be approximated by
almost periodic sequences which are the solutions to appropri-
ate discretizations. Two methods of discretizations are
discussed; the strongly stable scheme described above and

the Lax-Wendroff scheme.

~vii-




|
F
|
?,
i
:
a-
'ft

T e A

Introduction

This work extends certain facets of the theory of
Massera and Schaffer [1] (in the future referred to as Ms&S)
relating properties of the solution of an inhomogeneous
ordinary differential equation (ODE) to properties of the
solutions of the homogeneous system. In Part I we extend
this theory to difference approximations of the ODE. In
Part II we use the ODE theory, exclusively in the stable
case, together with the Hille-Yoshida Theorem to obtain
results for partial differential equations.

The study of admissibility theory and dichotomy theory
for difference equations was first done by Coffman and
Schaffer [2]. This work differs from their work in that we
are concerned with the preservation of admissibility and
dichotomy properties by a difference equationwhich is used
to approximate an ODE system which has certain of these
properties.

First let us review the theory of M&S. Consider the

equations
(0.1) y = A(t)y
(0.2) y = A(t)y + £(t)

Here the independent variable t ranges over the whole real
line and for each t the vector vy(t) 1lies in a Banach
space E (which may be infinite dimensional). A(t), for

each fixed t, belongs to the space of bounded operators on E
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which we will denote by L(E,E). Let B and D be two
Banach spaces of a function from the real line into E.

We say the pair (B,D) 1is admissible for (0.2) if

a) Yf € B 3a unique solution y (to (0.2)) € D, and
(0. 3)

b) Iyl < RIfN, .

This definition is more restrictive than that of M&S. We are
not going to deal with all the subtleties of their theory,
but just with certain important parts. It is pointed out,
however, that (0.3b) is actually superfluous (see Ms&S,
Chapter 5) but we include it in the definition of admissi-
bility for simplicity.

Observe that (0.3b) states that if we write the vy

given in (0.3a) as
(0.4) y = C(f)

then C, which is obviously a linear operator from B into D,
is also bounded. We will be concerned almost exclusively
with the case that D =B = A(E) where A is the space of
almost periodic (AP) functions with range in E. The range
in this notation will generally be omitted and we will simply
write i, etc., if no confusion might arise. At times we
will also be concerned with the cases B =D = L or

0o

B=D=C¢C which we define as the space of bounded continu-

0o

ous functions with range in E. Observe that A and Co
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are closed subspaces of L and we have the inclusions
(0.5) e JC B o

A(t) will always be an AP or L_ operator function

unless stated otherwise.

[ o P A TR ¢

Associated with the concept of admissibility we define
the concept of an exponential dichotomy for (0.1). Specifi-
cally (0.1) has an exponential dichotomy if there exist
projections Pl’ P2= = Pl such that if Y(t) is the
fundamental operator solution to (0.1) (Y(0) = I, see M&S,

Chapter 3), the following estimates hold for some o > 0.

a) Iy ()p Yy T (s) 1 < ke *(ETS)

rr
I A
(0]

(0.6)
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b) HY(t)PZY_l(s)H Ke .
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0
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Note that this is not the general definition of an

exponential dichotomy given in M&S (Chapter 8) but it is

equivalent to their definition when E is finite dimensional.

In the case that E 1is infinite dimensional we will in

general only be concerned with the stable case; that is,

P1=I, P2=0.

Observe that Pl is merely the projection on E, . the

space of initial data of solutions to (0.1) which are bounded
for t € [0,»). To see this note that if Yo were in the
range of P2 and if the corresponding solution y(s) were

bounded for s > 0 then, by setting t = 0 in (0.6b), we

obtain
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(0.7) vy = ¥ His)y(s) = PZY—l(s)y(s)

and Yo = 0 follows from letting s -+ «. Similarly P2 is
just the projection on E_ , the space of initial data which
are bounded for t € (-«»,0]. An exponential dichotomy merely
states that E = E_ ® E_ and that the solutions, in addition
to being bounded, decay exponentially.

Now it is a fundamental result of M&S that if A(t) € A
then (A,A) is admissible for (0.2) iff (0.1) has an expon-
ential dichotomy. The preceding statement is also true if
A is replaced everywhere by L_. We prove here the easy part

of the result; namely if we have an exponential dichotomy,

then we have admissibility. If f € L, define

(0.8) y(t) = C(f) = f G(t,s) f(s) ds
where
G(t,s) = Y(t)PlY-l(s) ; t >s
(0.9)
= -Y(t)PzY-l(S) : s>t .

Observe that the estimate

(0.10) I(t,s)l - ke ! t-s|

holds by the definition of an exponential dichotomy.
Using (0.10) we see that the integral in (0.8) exists,
that y satisfies (0.2), and that y is the unique L,

solution to (0.2) and in fact
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(0.11) tyr, < o,

So that C, defined in (0.8), is a bounded operator from
L, (E) ~» Lm(E). To see that C: A+ A we merely let T

be a common e-almost period for f and A. Then w(t) = y(t+T)
- y(t) is the unique L_ solution to (0.2) with

inhomogeneous term

(0.12) [A(t+T)=-A(t)ly(t+T) + £(t+T) - £(t) = O(¢e)
We then use (0.11) to obtain

(0.13) I (y (t+T) = y(£))I_ = 0O(e) .

The proof of the converse is more difficult and can be
found in M&S, Chapter 10. A simplified proof valid only in
the finite dimensional case is given in the Appendix.

In Section 1 we will define almost periodic sequences,
which will be the type of solution we will be searching for.
Section 2 is the most important of this work. Here, after
discussing the properties of the strongly stable difference
schemes we will be using, we will introduce a transformation
which will separate out the roots of the scheme inside the
unit circle and permit us to work with the Euler l-step scheme.
This technique was originally developed by Engquist [3]
although the author was not aware of his work when the
formulation given in Section 2 was developed. Engquist's

results will be discussed more thoroughly at the end of

Section 3.
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In Section 3 we settle the question of admissibility

when the homogeneous system is exponentially stable. Using
an inequality which is an exact discrete analogue to the
Gronwall inequality, we will show that the homogeneous
difference equation is also exponentially stable. From
there it will be a simple matter to obtain, for any suffi-
ciently small time step k, the existence of an almost
periodic sequence as a solution to the inhomogeneous
difference equation. Furthermore the sequences converge
uniformly to the unique AP solution to the ODE with a
uniform error O(kp) where p 1is the order of accuracy of
the scheme. We will also show that this solution can in
fact be calculated, i.e. it is stable under roundoff
errors and errors in initial data.

In Sections 4 and 5 we deal with the case that the
homogeneous system has a general exponential dichotomy.
We will show that the corresponding inhomogeneous difference
equation also has an exponential dichotomy. This is only
of theoretical interest as the solution will no longer be
stable under roundoff errors or errors in initial data.
In Section 6 we will deal with some miscellaneous topics,
especially the convergence of the mean value of the AP
sequence to the mean value of the AP solution, and also the
weakly nonlinear case.

In Part II we extend this theory to a simple class of

partial differential equations which can be written as an

evolution equation

B ST W Sy




(0.14) y = [B-8ly + f

where B 1is an unbounded operator which satisfies the
conditions of the Hille-Yoshida Theorem and §(t) is an
AP function such that the homogeneous system is exponentially
stable. We can obtain a unique AP solution to (0.14) by
using the formula which would be valid if B were bounded
and then showing that under mild restrictions on f the
resultant function does in fact satisfy (0.14).

In Section 8 we introduce a family of bounded operators
By which are spatial discretizations to B. We construct

functions Yh which are the unique AP solutions to
(0.15) Yy, = [Bh—(S]yh E

We will give conditions to insure that

(0.16) I (y-y; )= O(h)) ,

where j 1is the order of the approximation of B, to B.

h
In Section 9 we apply the theory of Part I to (0.15) to
obtain an AP sequence Yn:h which approximates Yp

We have however the unfortunate restriction

(0.17) —%ﬁ = 0(1)

h
where HBhH = O(l/hm). A more favorable result
(0.18) "Eﬁi= 0(1)

h

is obtained in Section 10 when using the Lax-Wendroff scheme.

SRS
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In Section 11 we will consider the extension of these

results in the case that the operator B is perturbed by
some bounded AP perturbation D(t).

Finally in the Appendix we will give a proof of the
basic ODE theorem that admissibility is equivalent to the
existence of an exponential dichotomy. The proof is valid
only in the finite dimensional case but is simpler than the
proof given in M&S and is also simpler than a finite

dimensional proof to be found in Coppel [4]. r
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l. Almost Periodic Sequences

Our first task is to introduce the discrete analogue
of an AP function. Following Corduneanu [5]) we define an

almost periodic (AP) sequence a with range in E as

follows:

a, is AP iff given € > 0 there exists a length L(g)
(a positive integer) such that in any sequence of L

consecutive integers there exists an N such that

(1.1) i a N " anlloo < ¢

where the sup in (1l.1) is taken over n. As shown in
Corduneanu (page 45) this is equivalent to normality i.e.
given any sequence of integers Ni the sequence

bn;i = a .. will have a uniformly convergent subsequence.
Although the proof given in Corduneanu is stated for scalar
valued sequences this proof is obviously valid if the range
is any Banach space E.

If we define the space LZ(E) as the Banach space of
bounded sequences with range in E then the AP sequences AH(E)
form a closed subspace of Lg(E). As usual the argument E
will be omitted when no confusion can arise.

We point out that normality can be used, exactly as in
the continuous case, to show that for any finite set of AP

r

sequences ai,...,an with range in possibly different spaces
1

E,...,E' and for any € > 0, there is always a i23ngth L(¢g)

-9~
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such that in any interval of length L we can find a common
e~almost period.

Finally we note that if f(t) is an AP function then
the sequence fn = f(nk) is an AP sequence for any real k.
The converse is also true as shown by Corduneanu (page 47)

but we shall not use that.

-10-
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2. Properties of the Difference Scheme

We consider linear A&-step, strongly stable schemes

described as follows.

L L g L
(2.1 ZO *3¥n+q T k Bjy =k jZO Bj[An+jyn+j+fn+j]

y ! j=o I°P*3

Here we assume that we are discretizing the ODE

(2.2) A(t)y + £(t)

o)
]

and Y, = y(nk), Al A(nk), fn = f(nk) where k 1is the

time step.

Associated with (2.1) we have the polynomials
2 . 2 .
(2.3) px) = ) apd, o) = [ g

It is well known (see Dahlquist [6] or Heinrici [7]) that

consistency implies that x = 1 is a simple root of p(x) = 0
and that
(2.4) p'(l) = o(1l) =1

where we have normalized the coefficients so that the common g

value in (2.4) is one.

Strong stability of the scheme is achieved by restricting

the size of the other -1 roots of p(x) = 0. Specifically,

if we number these roots X, r 0= l,...,2, then we require

-11-
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that there be a positive number 6 < 1, such that
(2.5) x;=1, x| <8<1, U= 2,...,8 .
Finally, we make two further assumptions.

(2.6) X, distinct , u = 2ammpl

(2.7) X # 0 ' u

2y mspud -
i

(2.7) is necessary because to get an AP solution, the
difference equation should be solved backwards and forwards.
This assumption can be removed in the important case that
the homogeneous ODE system is exponentially stable. Condition
(2.6) can be removed in all cases and is included here only
to simplify the following proofs. The removal of these
conditions will be discussed in Section 6.

Now in working with a multistep scheme, the standard

procedure is to convert it into a one-step scheme. To do

this we define the space E2 = EXEX...XE. (We will usually
write vectors in E, in column vector form.) We give E, the
norm inherited from this definition, namely if w € E2 and
1
Yy
(2.8) w = }
L
Yy
then
L i
(2.9) fwh™ = max Hy "E X

1

Here we have explicitly indicated the E norm in (2.9).

-12-
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We now consider the discretization of the linear

. yn+2—1
inhomogeneous system (2.2). 1If W, = . then we get
Yn
(2.10) Worl S ann + kfn .
Here if we define 2z_ =k A_ ,
n n
(2.11) C, = C(zn,...,zn+2) =
(0, T-B,2 , ) 1B, 1z o =a, 1) ...(0,I-B,z ) L(g z -a 1)
[ L£°n+8 2-1"n+8-1 “o-1 I ) £°n+g 0'n 70
I 0 e 0 s 0
0 I . i .
5 B |
. 0
0 <
0 ... 0 ... o I o0
o & \
f (QQI Blzn+2) EO B] fn+] ;
0 :
f = X :
n 0
\ 0 )
Observe that Cn € L(EQ,EQ) and will be just an m&xmgQ |
matrix in the case that E is an m-dimensional space (in which §
case it is called the companion matrix). Note also that since $

-13-
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A is uniformly bounded in t, the implicit term (GQI-BQZn+2
can be inverted, for k sufficiently small, uniformly in n.
We finally point out that if A and f are AP (L,) then Cn

E and Eh are AP (L:) and also that C given in (2.11) is a

smooth function (in the Frechet sense) of its 2+1 arguments.

Now with A a constant and z = kA € L(E,E) we consider

for small Wzl the homogeneous difference scheme

(2.12) wn+l = U(z)wn

1

- -1
U(z) = (aQI-Bzz) (62_1z-a£_ll) ces (aQI-BQZ) (Boz-aol)

I 0 . L L 0
0 : . * L Ld
: 3 I 0 .
g : . 0
0 . . . 0 I 0

U(z) is a mapping, defined for small lzl, from L(E,E) into

L(EQ,EQ). Observe the following properties of U(z).

(2.13) (a) U(z) is a smooth (in the Frechet sense) function of z

(b) U(0) has eigenvalues exactly X, with eigenspaces

Eu + Where x”'l E
u Y
’ Yy € E

u X
u

L l<--c-

(c) E =8 ] E.

-14-




Now (a) and (b) should be clear. To see (c), note that the

spaces Eu are closed and also that any two have only zero

X
in common. Let w = :l and suppose W has an expansion
X
£ (-1
) u .yu
(2.14) w= ) d
u=l XYy
Yu
- Yy
Then if we define the vector w to be ( t J we can write
Yq
(2.15) w=Vw
=l =il
vV = Xq cee X
X X,
1 ma 1

i.e. V is just the Vandermonde matrix associated with the
distinct numbers XpreeerX). (2.13c) now follows directly
from the invertibility of V.

The representations (2.14) and (2.15) enable us to
define an equivalent norm on the space Eg. Specifically if
W is expressed as in (2.14) we define

wid =
(2.16) i wi mix "yu"E

That I 1Y is equivalent to | e follows immediately from
the representation (2.15) and the invertibility of V. Note

chat the equivalence of these norms implies the equivalence

of the operator norms they induce on L(EQ,EQ). Of course

-15-
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this paragraph is superfluous in the case that E is finite

dimensional.

For future use we point out that (2.13b,c) imply

1

that U (z) exists for small Izl and is smooth in z.

Now define the space E1 =0 ) E,- We have E = E @El

w1 2 1
and we note that E, is canonically isomorphic to E. At times
we will identify E1 with E but this should not cause any

' ; Pt 1
confusion. With respect to the decomposition E = E.® E~ we

1
see that U(0) is in block diagonal form; symbolically,
D(0) 0
(2.17) u(o) =( ]
0 B(0)

1.1

here D(0): E, ~» E, and is the identity, while B(0): E »E

] 1
4 and 1B(0)IY < 6. This is the operator norm induced on

L(EQ,EQ) by the I I'Y norm on E, and follows from the fact

that B(0) is just multiplication by x, on the space Eu'

We can now state the fundamental theorem of this section.

s; Theorem 1. For small Izl there exists an operator
T(z): L(E,E) - L(EQ,EQ) such that
(a) T(0) = I (Identity on E,)

(b) T(z2), T-l(z) are smooth in 2z

e A

(c) L(z) = T-l(z)U(z)T(z) is in block diagonal form

with respect to the decomposition EQ = E1 ® El.

(d) Writing L(z) symbolically as

D(z) 0

L(z) =(
0 B(z)

-16-
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then B(z)| _o = B(0) (from (2.17)) and IB(2)I" < & while

D(z) has an expansion

(2.18) D(z) =1 + z + o(lzl?)

where E1 is identified with E.

Theorem 1 is basically trivial and the proof involves
familiar arguments. First we note that U(z) is smoothly
invertible for small lzl. (The restriction "for small lzl"
will not be stated explicitly in the future.)

Next we observe that (wI - U(z))-1 exists for w in a
small annulus around the circle |w| = 6 and this holds
uniformly in z. This follows from (2.13b) and the geometric

series.

Now define the projections

(2.19) P(z) = E%I f (WI-U(Z))_l dw , Q(z) = I - P(z) .
|wl=0
That P and Q are projections is a familiar result which

follows from the resolvent identity,

(wyI-0(2)) "1~ (w,I-U(2)) "

(2.20)

= (wymwy) (0 T-0(2)) "ty 1- vzt

calculating P2 by integrating around two slightly different
circles, and interchanging the order of integration. It
follows from the construction that P(z) and Q(z) commute

with U(z) and that they are smooth functions of z.

-17-




It is clear by applying P(0) to an arbitrary vector
w € E, and using the expansion given in (2.15) that P(0)
is exactly the projection onto El along E, and Q(0) is the

projection onto Ey along El.

Now define
(2.21) T(z) = P(2)P(0) + Q(z)Q(0)

Clearly T(0) = I and T(z) is smooth whence T-l(z) exists

and is also smooth. Note that this holds in either of the

e

norms | or | § on L(EQ,EQ). Let

(2.22) L(z) = T-l(z)U(z)T(z)

We claim L is in block diagonal form with respect to

the decomposition E, = Eq o El . This follows directly

from the fact that P(z) and Q(z) commute with U(z). 1In

fact let x € E then

1 H
(2.23) U(2)T(2)x = U(z)Q(z)x = Q(2)U(z)x = w (say) .

Now if y = T-l(z)w and y = y, + yl with Yy € E

and yl € El we have

1

(2.24) w=0(2)U(z)x = T(2)y = Q(z)y; + P(2)y’

whence

(2.25) P(z)yl = T(z)yl =0

and so yl = 0 by the invertibility of T(z). Thus L(z)

maps E; + E; and a similar argument shows L(z): El > El.

-18-
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If we write (using the notation of (2.17)) L(z) as

D(z) 0 D(z): E, » E
(2.26)  L(z) = =

0 B(z) B(z): ET + E

then we see that D(z) and B(z) are smooth in z; D(0) =1
and IB(0)IY < 6. It follows immediately by continuity

that
(2.27) Iz(z)IY < o

for small lzl . Now (2.27) will imply that given z;,...,zy

with Hzfl small then

2

(2.28) LT B(zi)u" <K &

i=1
for a constant K independent of the z; and N.
It only remains to study the first order structure of
D(z) in order to obtain (2.18). Expanding D(z) about z = 0

we can write
(2.29) D(z) = I + C(z) + o(lzl?)

where C is the Frechet derivative of D(z) at z = 0 and is
a bounded linear map from L(E,E) into L(El,El) which we
identify with L(E,E). It is necessary to show that C is
the identity, and as one might expect this will follow very
easily from consistency.

Let A be an arbitrary element in L(E,E) and let z = kA,

A =C(aA). For y € E and identifying Ey with E, we

-19~
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calculate the following limit

(2.30) lim D(kA)y = (I + ka' +o(k%))%y
k-0
nk= t
for any fixed t > 0.
]
As one would expect this limit is etA Yy because
the difference scheme expressed in (2.30) is consistent
with the ODE y = A'y.

More precisely since
(2.31) ID(kA)I < 1 + kR

for small k, where R is some fixed constant, it follows

that

(2.32) Ibka)¥t < e®, Nk <T, 0<t<rT. ]
Let X solve the difference equation é
X = D(kA)x 1
(2.33) n+l n ;
XO = Y H 7
. _ n . o A'kn - : . :

i.e. x = D(kA) y. Now if x =e y then x, satisfies
the perturbed difference equation 3
(2.34) X .1 = [D(kA) + O(k°)1% y
) n+1 n -
where the term O(kz) is uniform for nk < T. Equation (2.34) |
= 4
follows directly from the fact that x(t) satisfies the ODE i

(2.35) X =A% . e

-20-
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Letting w, = §n - X, Wwe can show easily enough that

(2.36) "wn" = 0(k) , nk < T .

3 In fact from (2.33) and (2.34) we obtain

k2 5 n-j
(2.37) w_=k“ )} D(ka) o(l)w

n j=1 j=1 °

If we use (2.32) to bound the powers cof D(kA) and thus "xn",

we then obtain (2.36) and letting k » 0 we obtain

1
(2.38) lim D(kA)"y = e®B y
n-o>o
nk=t
Recalling the identification of El with E we define the
5 iy -
vector y = : whence vy € E;-
y
Thus (2.38) can be expressed
A't
€ y
(2.39) lim L(ka)"y = 2
k-0 3
nk= t eA ty

Now we are going to show that A' = A by calculating this

limit directly from the definition of L(kA). In fact since

lu(o)IY = 1 it follows that lu(ka)™Y is uniformly bounded

for nk < T (and of course this is also true if we replace
ot

oY ). Then writing

(2. 40) Lka)® § = v ika) uka)® Tka) v ,

and letting k =+ 0 such that nk

t, using the continuity

A S e it S e e i SEee

of T(z) and the fact that T(0) I together with the
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uniform boundedness of the powers U(kA)", we are left with

At
ey

(2.41) lim L(kkA)" ¢ = limuka)"y =
k-0 k+0 A
nk =t nk=t ey

the last equality follows from the fact that a consistent
and stable difference scheme is convergent.

Since A was arbitrary, (2.41) together with (2.39) shows
that A = A', which proves that the map C is the identity

and this completes the proof of Theorem 1.

-22-
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3. The Exponentially Stable Case

We now assume that the homogeneous system (0.1) is

exponentially stable. Thus, if Y(t) is the fundamental

operator solution to (0.1) (Y(0) = I), then the estimate

(3.1) Y (0)y L s) < ke ®(t78) t > s
will hold with positive constants K and o. In the sequel
we will use K as a generic positive constant so it will
appear in contexts other than (3.1).

We wish to prove a similar estimate for the homogeneous

difference equation (see (2.10), (2.11))

(3.2) W

n+1 ann

Now C, is invertible for all n by (2.7). Then (3.2)

has a fundamental solution W (W0 = I) which is simply

9
=

=
o]
]
(@]

n>20,

-
1}
o

(3.3)

W = l Ci I l'l > 0 .
i=-1

It can easily be verified that the unique solution
to (3.2), LA given initial data w. is simply

_ -1 '
(3.4) wo= WnWj wj . '3

Note that for n > j, angl is simply

-23-




(3.5) wwl=TTec. , n > 3

In the stable case we will only use WnW;l for n > j
and we can see that the invertibility of Cy is not required
in this case and assumption (2.7) is therefore not required
here.

We intend to show that for small k (this will not be
stated explicitly in the future) (3.1) implies

-alk(n-j)

lIIiKe ’ n>j,

(3.6) IIWnWj

where K 1is used as a generic constant and can be taken
independently of k, while a; = ot O(k). Thus since o > 0,
a, can also be taken independent of k for small k.

To attain (3.6) we suppose A(t) is Cl. All derivatives
that are assumed will always be required to be AP or L_. This
will not be stated explicitly in the future. The smoothness
condition on A will be removed in Section 6.

Expanding Al about An we can write (3.2) as

+]

(3.7) W = UGB Jw + k20(1)wn

n+1

Here the 0(1l) term is uniform in n and the operator U is
given by (2.12). We are going to show that perturbations of
the type k20(l) preserve exponential stability. We thus

consider the unperturbed system

(3.8) W = UGB )i

n+1

-24-
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If we let ;n = T(kAn)v-vn » Where the operator T is
introduced from Theorem 1, and note that by the smoothness

of T and A we have T (kA

n+1) = T(kAn) + k20(1), we see that

we should consider the difference equation

(3.9) v = L(kAn)vn

n+1

where the operator L has been studied in Theorem 1.
If v denotes the fundamental solution to (3.9) then
since L 1is block diagonal we see that Vn itself is also

block diagonal. If we write Vn in the form

]

0
2

o B

\%
(3.10) v,

\%
n

we can see that the second part, the contribution from the
roots inside the unit circle, causes no difficulty. In fact
for n > j we have

-1

3
[

viv?
n'j

;

i B(kAi)

I
-

(3.11)

_1 o
Iviv2 1 o< x g™3
n j —_

where we have used (2.28) and K as a generic constant.
Since 6 is a fixed number less than 1 we see immediately
that (3.6) holds for Vi where a; can in fact be taken
equal to o for small k.

We must now deal with Vi. Neglecting perturkations

of k20(1) and identifying the space E with E we

1
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consider the difference equation

(3.12) xn+1 = (I + kAn)xn

i.e. we have reduced the problem to the study of the Euler

l-step scheme.

We will compare Xn + the fundamental solution to (3.12),

with Yn (= Y(nk)) where Y is the fundamental solution to

the homogeneous equation (0.1).

Let H(t,s) Y(t)Y_l(s). As a function of t,

H satisfies the equations

H = A(t)H '
(3.13) i=a%(t)n + A(t)H,
H(t,t) =1 e
Integrating (3.13) we obtain
1
H((n+l)k,nk) = I + k f H(nk+6k,nk) de
0

(3.14)

I + kA(nk) + k2

11
f f ® d6 d¢ H(nk + ¢6k, nk) .
00

Now since A 1is bounded it is a standard result (M&S,
Theorem 3.1 C), that

(3. IL5) lH(t,s)l <K (R) for [t-s| <R,

where R is any positive number. This does not require

exponential stability and in fact is an immediate consequence

of Gronwall's inequality. It now follows from the second
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equation in (3.13) that the coefficient of k2 in (3.14) is

bounded uniformly in n and k. This implies that Yn is

the fundamental solution operator to an equation
_ _ 2
(3.16) Yn+1 = [I+an(k)]Yn = [I+kAn + k O(l)]Yn

where the O0(l) term is uniform in n. This means that we

can regard the X, equation (3.12) as a perturbation of the

Yn equation. We point out that the reduction we have obtained
does not use exponential stability and so is valid in the case
that (0.1) has a general exponential dichotomy. If we use

the stability, however, we see that Yn satisfies the

estimate

1" -Ol.k (n-j)

(3.17) ||YnY; <Ke n > j

We must now prove the proposition that exponential stability

is preserved under k2 perturbations.
Theorem 2. Consider two difference equations

(3.18) y

n+l R(n,k)yn

~

xn+l

(3.19) R(n,k)xn + kS(n,k)xn

defined for small k. Suppose that (3.18) is exponentially
stable, that is there exists constants K and o independent

of k such that

1 -ak (n-3)

(3.20) “§n§; Il <Ke , n>j,

_r
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where Yn is the fundamental solution to (3.18). We point

out that we do not require R(n,k) to be invertible since

we only study the solution §n§51 for n > j. In that case

~

Yn is not invertible and we must use (3.5) in place of Y §Tl

’
but we will retain this notation for simplicity.
Under this hypothesis there exists an €y Such that if

for small k,

(3.21) "S(n,k)"oo <ex< €0

where the sup in (3.21) is over n, then (3.19) is exponentially

stable and if Qn is the fundamental solution to (3.19) (the
dependence on k has been suppressed) the estimate
- ok (n-3)

(3.22) IX XM < ke

where K, can be taken independent of k and a, = o+ O(e).
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